PipTazo vs. Cefepime Monotherapy for Empiric Treatment of Febrile Neutropenia

September 12, 2006

Justin Lee
Pharmacy Resident
University Health Network
Outline

1. Review current guidelines for empiric therapy of febrile neutropenia
2. Overview of the trial
3. Primer on non-inferiority trials
4. Critical appraisal of the trial
5. Comparison to UHN Guidelines
6. Discussion
Current Guidelines
What is Febrile Neutropenia?

single oral temp \(\geq 38.3^\circ C \) or
sustained oral temp of \(\geq 38.0^\circ C \) for \(\geq 1 \)hr

AND

ANC < 500 cells/mm\(^3\) or
ANC <1000 cells/mm\(^3\) with expected
decrease to < 500 cells/mm\(^3\)
Why Do We Treat Empirically?

Empiric antibiotic therapy should be administered promptly to all neutropenic patients at the onset of fever.

Why?

- Progression of infection in neutropenics is rapid.
- Neutropenics with early bacterial infections cannot be reliably distinguished from non-infected patients.
Why Do We Treat Empirically?

- 30% of patients obtain positive cultures
 - 2/3 of these cultures are gram positive

- Always need gram negative coverage!
Causes of Febrile Episodes

Gram-positive bacteria (60-70%)
- S. aureus
- S. viridans
- Pneumococci
- Methicillin resistant types
 - CNST
 - VRE
 - Corynebacterium jeikeium

Gram-negative bacilli
- Pseudomonas
- E. coli
- Klebsiella

Fungi
- Candida
- Aspergillus

Fever (temperature $\geq 38.3^\circ C$) + Neutropenia (<500 neutrophils/mm3)

- **Low risk**
 - Oral
 - Ciprofloxacin + Amoxicillin-clavulanate (adults only)

- **High risk**
 - iv
 - Vancomycin not needed

- **Vancomycin needed**

Monotherapy
- Cefepime, Ceftazidime, or Carbapenem

Two Drugs
- Aminoglycoside +
 - Antipseudomonal penicillin, Cefepime, Ceftazidime, or Carbapenem

Vancomycin +
- Vancomycin + Cefepime, Ceftazidime, or carbapenem
 - \pm aminoglycoside

Reassess after 3–5 days
Monotherapy vs. Combo Therapy

- Combo therapy remains prominent in American guidelines

- Advantages of combo therapy?
 - Synergy against some gram negative bacilli
 - Minimize drug-resistant strains
Monotherapy vs. Combo Therapy

- Studies have shown no significant differences between monotherapy and combination therapy

Monotherapy Options

- **3rd / 4th Generation Cephalosporins**
 - Ceftazidime*
 - Cefepime

- **Carbapenems**
 - Imipenem-cilastatin
 - Meropenem

- **Piperacillin / Tazobactam?**

Trial Overview

A Randomized, Open-Label, Multicenter, Comparative Study of the Efficacy and Safety of Piperacillin-Tazobactam and Cefepime for the Empirical Treatment of Febrile Neutropenic Episodes in Patients with Hematologic Malignancies

Rationale

➢ To demonstrate the noninferiority of monotherapy with piperacillin-tazobactam compared with cefepime in the empirical treatment of febrile neutropenic patients with cancer
Design

- Open-label
- Randomized-controlled
- Multi-center (34 tertiary care hospitals)
- Multi-national (US, Canada, Australia)
- Non-inferiority trial
Design

Sample Size Calculation

- Assumed antibiotics were equally effective
- Assuming success rates of 50%,
 - needed ~132 patients per treatment group
- Assuming evaluable rate of 50%,
 - needed ~528 patients to obtain 264 evaluable patients
Design

- One-sided 95% CIs were calculated for the difference in treatment success
 - Non-inferiority was concluded if the lower bound of the 95% CI for the difference in success ≥ -0.20
Difference in Treatment Success (New – Reference Treatment)

Design

Superior

Non-inferior

Inconclusive

-0.2 0
Intervention

PipTazo 4.5 g IV Q6H
vs
Cefepime 2 g IV Q8H

- Antibiotic prophylaxis was discontinued
- Administered for up to 21 days
- Modified at the investigator’s discretion
Inclusion Criteria

- ≥ 18 years old
- High risk for medical complications
- ANC < 0.5 x 10^9 cells/L
 - (or <1.0 x 10^9 with expected decrease to <0.5 x 10^9 after chemo)
- Febrile episode after chemotherapy for:
 - haematological malignancy
 - hematopoietic stem cell transplant (HSCT)
Exclusion Criteria

- Hypersensitivity to β-lactam antibiotics
- Hepatic dysfunction
 - bilirubin >3X ULN, transamininase > 5X ULN
- Renal insufficiency requiring dialysis
- Positive test for HIV antibody
Overall Scheme of Trial

Assessed for eligibility
\((n = 528)\)

Centralized randomization

Piperacillin-tazobactam group
Allocation to therapy, \(n = 265\)
Received allocated therapy, \(n = 265\)

Cefepime group
Allocation to therapy, \(n = 263\)
Received allocated therapy, \(n = 263\)
Primary Endpoints

“Treatment success”
- Defervescence without treatment modification
 - at 72 hours
 - end of treatment
 - test-of-cure visit
 - defined as at least 7 days post-treatment
Secondary Endpoints

- Time to defervescence
- Microbiology efficacy
- Additional use of glycopeptides antibiotics
- Emergence of resistant bacteria
- Safety
Results

- Rates of treatment success were higher among PipTazo recipients at all three assessment points:
 - 72 hours
 - End of treatment
 - Test-of-cure visit

- PipTazo was deemed to be non-inferior to cefepime at each of these time points.
Test of Non-Inferiority

<table>
<thead>
<tr>
<th>Time of Evaluation</th>
<th>Treatment Success</th>
<th>P_{\text{inferiority}}</th>
<th>95% CI (2 sided) of the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PipTazo (n=265)</td>
<td>Cefepime (n=263)</td>
<td></td>
</tr>
<tr>
<td>72 hours</td>
<td>57.7%</td>
<td>48.3%</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>End of Treatment</td>
<td>39.6%</td>
<td>31.6%</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Test of Cure Visit</td>
<td>26.8%</td>
<td>20.5%</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>
Difference in Treatment Success (New – Reference Treatment)

-0.2

Superior

Non-inferior

Inconclusive

Inconclusive
PipTazo - Predictor of Tx Success?

- PipTazo was associated with treatment success ONLY on multi-variate but not univariate analysis

- **univariate analysis**
 - OR 1.42, 95% CI 0.95-2.12 (CROSSES 1)
 - $\chi^2 = 2.863$, $p = 0.0914$

- **multi-variate analysis**
 - OR 1.65, 95% 1.04-2.64 (DOES NOT CROSS 1)
 - $P = 0.0354$
Test of Superiority – Validity?

<table>
<thead>
<tr>
<th>Time of Evaluation</th>
<th>Treatment Success</th>
<th>(P_{\text{superiority}})</th>
<th>95% CI (2 sided) of the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PipTazo (n=265)</td>
<td>Cefepime (n=263)</td>
<td></td>
</tr>
<tr>
<td>72 hours</td>
<td>57.7%</td>
<td>48.3%</td>
<td>(< 0.0360)</td>
</tr>
<tr>
<td>End of Treatment</td>
<td>39.6%</td>
<td>31.6%</td>
<td>(< 0.0642)</td>
</tr>
<tr>
<td>Test of Cure Visit</td>
<td>26.8%</td>
<td>20.5%</td>
<td>(< 0.1108)</td>
</tr>
</tbody>
</table>
Difference in Treatment Success (New – Reference Treatment)
Treatment Failure

- Rates of treatment failure were lower among PipTazo recipients
 - 51.7% vs 61.2%
 - OR 0.68, 95% CI 0.48-0.96 (DOES NOT CROSS 1)
 - $\chi^2 = 4.865, p = 0.027$

- Regimen medication with glycopeptides for persistent fever was the most frequent reason for treatment failure
 - Regional variability in use – effect on success rates?
Time to Defervescence

- Receipt of PipTazo was more likely to be associated with earlier defervescence
 - HR 1.24, 95% CI 1.02-1.51, p = 0.0332
Figure 2. A, Time to defervescence for all patients in the modified intent-to-treat analysis. Median times were 7 days and 10 days for the piperacillin-tazobactam and cefepime groups, respectively (P = .1058). B, Time to defervescence for modified intent-to-treat patients classified as experiencing treatment success without modification. Median times were 5 days in both groups (P = .9649). C, Time to defervescence for modified intent-to-treat patients classified as experiencing treatment failure. The median times were 9 days and 14 days for the piperacillin-tazobactam and cefepime groups, respectively (P = .0202).
Safety & Adverse Events

- Antibiotics were generally well-tolerated
- Rates of AEs were not significantly different
 - 97% vs 97.7%, p = 0.788
- More patients discontinued cefepime compared to PipTazo
 - 64 vs. 43 recipients, $\chi^2 = 5.371$, p = 0.02
- Primary reason was adverse events
 - 30 vs 19 recipients, $\chi^2 = 2.815$, p = 0.093
Safety & Adverse Events

- Reduced risk for C. difficile-associated diarrhea among PipTazo recipients
 - 2.3% vs 6.8%
 - OR 0.32, 95% CI 0.12-0.81
 - $\chi^2 = 6.381, p = 0.012$
 - STATISTICALLY SIGNIFICANT!

- Consistent with previous studies
Safety & Adverse Events

- Reduced rate of mortality among PipTazo recipients
 - 3% vs 5.7%
 - OR 0.51, 95% CI 0.21-1.24
 - $\chi^2 = 2.283$, $p = 0.131$
 - NOT STATISTICALLY SIGNIFICANT
Author’s Conclusions

- PipTazo 4.5 g IV q6h is a safe, efficacious and acceptable monotherapeutic option in the empirical treatment of high-risk febrile neutropenic patients with cancer.

- It is non-inferior compared with cefepime.
Primer on Non-Inferiority Trials
Non-Inferiority Trial Characteristics

- One-sided in nature

- Aims to demonstrate that an experimental intervention is no worse than a reference intervention by more than a prespecified amount (-\(\Delta \) to 0)

- \(\Delta \) is the “non-inferiority interval or margin”
Non-Inferiority Trial Characteristics

- Compared with classic superiority trial, null and alternative hypotheses are reversed

- 4 necessary requirements:
 1. Defined noninferiority margin
 2. Margin is accounted in sample size calculation
 3. Both intention to treat and per protocol analyses
 4. Confidence interval for the result
Non-Inferiority Interval (Δ)

- Should be based on statistically reasoning, clinical judgement, and/or regulatory grounds

- Smaller than or equal to:
 - Smallest clinically meaningful difference
 - Largest clinically meaningless difference

- Should be factored into the sample size calculation
Analysis of Results

- Use BOTH intention to treat (ITT) and per protocol analyses
 - There is greater confidence in results when the conclusions are consistent
 - ITT analysis is generally biased toward finding no difference
 - Per-protocol analysis is unpredictable in terms of direction of bias
Use of Confidence Intervals

- 1-sided 97.5% CIs are often used

- 2-sided 95% CIs are recommended
 - Permits unexpected benefit of assessing superiority (if difference observed is in the opposite direction of what was expected)

- Are 1-sided 95% CIs acceptable?
Critical Appraisal
Are the Results of the Study Valid?

- Was the assignment of patients randomized?
 - Yes – central randomization

- Were all patients properly accounted for at its conclusion?
 - Few patients were lost to follow-up
 - Modified ITT analysis was conducted
Follow-Up

Piperacillin-tazobactam group
Allocation to therapy, $n = 265$
Received allocated therapy, $n = 265$

Follow-up:
- Success without modification, $n = 71$
- Initial response/regimen modified, $n = 7$
- Indeterminate, $n = 47$
- Failure, $n = 137$
- Lost to follow-up, $n = 3$
- Discontinued therapy before TOC, $n = 43$
 - Adverse event, $n = 19$
 - Insufficient response, $n = 19$
 - Protocol violation, $n = 1$
 - Withdraw consent, $n = 1$
 - Other, $n = 3$

Cefepime group
Allocation to therapy, $n = 263$
Received allocated therapy, $n = 263$

Follow-up:
- Success without modification, $n = 54$
- Initial response/regimen modified, $n = 6$
- Indeterminate, $n = 41$
- Failure, $n = 161$
- Lost to follow-up, $n = 1$
- Discontinued therapy before TOC, $n = 64$
 - Adverse event, $n = 30$
 - Insufficient response, $n = 24$
 - Protocol violation, $n = 4$
 - Withdraw consent, $n = 1$
 - Other, $n = 5$
Are the Results of the Study Valid?

- Was their blinding?
 - Open label – but differences in administration frequency would have identified antibiotics even if blinded

- Were the groups similar at the start of the trial?
 - Characteristics seems to be similar with respect to underlying disease, risk factors for infections, etc.
 - All relevant characteristics seem to have been included
Are the Results of the Study Valid?

- Were the groups treated equally?
 - Uncertain – regimens were modified at the investigator’s discretion
 - Eg. Variable vancomycin use by region
Are the Results of the Study Valid?

Was the non-inferiority margin defined a priori on the basis of statistical reasoning and clinical judgement?

- $\Delta = 0.20$ was used without justification
- Previous studies have used $\Delta = 0.10-0.20^{1-4}$
- Some studies have failed to report Δ

4. Del Favero et al. CID 2001;33:1295-1301

12/09/2006 Justin Lee
Are the Results of the Study Valid?

Was the active control effect consistent with that in historical trials?

- **Success rate with cefepime = 20.5%**
 - Low compared to previous studies - 55-57%\(^1,2\)

- **Success rate with PipTazo = 26.8%**
 - Low compared to previous studies – 49-81%\(^3\)

4. Del Favero et al. CID 2001;33:1295-1301
Are the Results of the Study Valid?

- Was ITT and per protocol analysis conducted?
 - Modified ITT analysis was conducted
 - Bias towards non-inferiority
Are the Results of the Study Valid?

- Was the non-inferiority assessment adequately powered to minimize statistical uncertainty?
 - Is $\Delta = 20\%$ clinically acceptable?
 - Authors suggest that this a priori requirement had no impact on the analysis
 - PipTazo treatment success rates were as good or sometimes better than cefepime
 - Unclear whether $\Delta = 0.20$ was used in sample size calculation
Are the Results of the Study Valid?

- Was the non-inferiority assessment adequately powered to minimize statistical uncertainty?
 - What is Δ’s impact on sample size?

- Given 50% success rate and $\Delta = 20\%$,
 - $2n = \left[4 \times 10.5\pi (100 - \pi)\right] / \delta^2$
 - $n = 131.25$ patients

- Given 50% success rate and $\Delta = 15\%$,
 - $2n = \left[4 \times 10.5\pi (100 - \pi)\right] / \delta^2$
 - $n = 233.33$ patients
What were the results?

- PipTazo shown to be non-inferior to cefepime using $\Delta = 0.20$
 - The lower bound of the (1 or 2 sided?) 95% CI was ≥ -0.20

- No statistical significance
 - Superiority of PipTazo
 - Rate of any adverse event
 - Mortality

- Statistical significance in favour of PipTazo
 - Lower rates of treatment failure
 - Additional use of glycopeptides?
 - Reduced time to defervescence
 - Reduced risk of CDAD
UHN Guidelines
Day 0

Piperacillin/Tazobactam 4.5 g IV q8h plus
Tobramycin 5mg/kg IV q24h, if cultures negative after 48-72 hours, D/C Tobramycin

MODIFICATIONS:
- Severe mucositis/oral lesions
- Documented bloodstream or soft tissue infection with Gram+ organisms
- Suspected line related infection
- Abdominal/perirectal focus
- Diffuse pulmonary infiltrates
- Renal dysfunction
 (please see page 2)

Day 5-7 after antibiotic initiation

Reassessment for empiric addition of Amphotericin B 0.6mg/kg IV q24h
D/C Tobramycin when Amphotericin B started
Will the Results Help Me in Caring for my Patients?

Can the results be applied to my patients?

- Similar to UHN, trial sample focuses on patients with hematologic malignancies
 - However,
 - Excludes solid tumour
 - Includes patients with stem cell transplants and/or receiving hematological growth factors

- Differences in frequency of antibiotic administration – PipTazo dosed Q8H at UHN, not Q6H as per study
Conclusion

- Was this originally a superiority trial?
- Unclear whether $\Delta = 0.20$ is justified
- Unclear whether ability to recognize treatment effect was impaired by early modification of regimen by investigators
- Were rates of glycopeptide use significantly different?
- Does per protocol agree with the modified ITT analysis?
Conclusion

- Despite its limitations, this study makes a case for revisiting the guidelines on empirical antibiotic treatment of febrile neutropenia.
Literature on Critical Appraisal of Noninferiority Trial

Discussion