Patent Ductus Arteriosus in the Newborn: Management from a Pharmacy Perspective

Laura Murphy, BSc.Phm.
Pharmacy Resident
NICU Rotation
The Hospital for Sick Children
Objectives

- Describe the role of the ductus arteriosus antenatally and postnatally
- Understand the choice of treatment options for a hemodynamically significant PDA
- Develop a pharmacy care plan for a neonate with a medically or surgically managed PDA
Acronyms

- LV=left ventricle
- RV=right ventricle
- LA=left artery
- RA=right artery
- CO=cardiac output
- PVR=pulmonary vascular resistance
- VLBW=very low birth weight
- CHD=congenital heart disease
- L-R=left to right
- CLD=chronic lung disease
- RDS=respiratory distress syndrome
- ARF=acute renal failure
- NEC=necrotizing enterocolitis
- IVH=intraventricular hemorrhage
- PA=pulmonary artery
Fetal Circulation
Fetal Circulation

- RV=2/3 of CO through ductus arteriosus (DA)
- Patent Foramen Ovale (PFO)

At birth

- PVR decreases and get 10x increase in pulmonary blood flow
- Increased LA pressure gets closure of PFO
Fetal Circulation: DA
Physiology of closure

- 2 stages
 1. Functional closure
 - smooth muscle contraction in 72 hours (full term infants)
 2. Anatomical closure
 - Remodeling from pulmonary end due to hypoxia and cell death
 - Opposed by PGE$_2$ and NO
Patent Ductus Arteriosus (PDA)

- Failure of spontaneous closure 24-48h after birth
- Common issue
 - Preterm infants
 - 40-55% of babies <29 weeks
 - VLBW infants (<800g)
Significant PDA

- Complications
 - L-R transductal shunt
 - Pulmonary overcirculation
 - Hypoperfusion
 - Pulmonary edema
 - LV failure
 - Decreased CO (oliguria, hypotension, acidosis)
 - CLD
 - (from increased/prolonged ventilator requirements)
 - End Organ Damage (decreased systemic perfusion)
 - ARF, NEC, IVH
Significant PDA

- Signs and Symptoms
 - Systodiastolic murmur
 - Hyperactive precordium
 - Bounding pulses
 - Delayed hypotension
 - Oxygenation failure

- Diagnosis
 - ECHO
Significant PDA
Significant PDA

- **Role postnatally: Cyanotic CHD**
 - Pulmonary Artery/Pulmonary Ventricle Stenosis
 - Tetrology of Fallot
 - Transposition of the Great Arteries
 - Coarctation of the Aorta

- MUST be ruled out before artificial closure of PDA
Significant PDA

- Cyanotic CHD: Role of the PDA
- Supply systemic circulation with some oxygenated blood (i.e. bypass aorta)
- Maintain patency:
 - Alprostadil Infusion
 - Dose: 0.05-0.1mcg/kg/min continuous infusion
 - Interim management until corrective surgery
Management: Risk vs. Benefit

- Prophylactic medical treatment
 - Questionable during 1st 24 hours of life
 - Decreases significant PDAs, BUT 40% of infants are treated unnecessarily
 - Risk of undiagnosed cyanotic CHD
 - Even VLBW infant’s PDA may close spontaneously in 1st week of life
Management: Risk vs. Benefit

Goals
- Reduce pulmonary overcirculation and/or LV failure
- Improve systemic and/or end-organ perfusion

Risks/benefits assessed by neonatologists and surgeons and discussed with parents

Ligation typically follows failure of indomethacin, or if contraindications exist to treatment
Medical vs. Surgical Management

Search strategy:
- Embase, Medline
- Search Terms
 - Infant, premature
 - Patent ductus arteriosus
 - Ligation
 - Anti-inflammatory agents, non-steroidal
Medical vs. Surgical Management

- **Early surgery preferable**
 - Low morbidity, almost certain success\(^1,2\)
 - Lower incidence of NEC\(^3\)
 - Decreased incidence and severity of CLD\(^4\)

- **Meta-analysis\(^5\)**
 - Inconclusive if medical or surgical management preferable

Medical Management
Twin B.C. – Medical Management

- GA: 30 weeks, BW: 1.355kg
- Mother: 22yo, G1P0, GBS unknown
- Admission weight: 1.09kg, day 1 of life
- Issues:
 - Premature
 - RDS – Surfactant x 1 dose, CPAP
 - Hypotension – dopamine (10mcg/kg/hr) x 2 days
 - Suspected sepsis – ampicillin + gentamicin x 48hours (cultures negative)
 - Apnea of prematurity – caffeine 3mg/kg/dose IV Daily
Twin B.C. – Medical Management

- Day 3 of life
 - PDA seen on ECHO
 - Indomethacin 0.2mg/kg/dose IV Q12H x 3 doses
 - TFI=140mL/kg/day (non-restricted)
 - TPN, Lipids
 - D10W/NS 0.2
Twin B.C. – Medical Management

- Monitoring:
 - U/O = 2.2cc/kg/hr, SCr=60, Urea = 4.2
 - Na = 143, K = 4.4
 - HR=140-160, BP=43/25
 - PLTs=215
 - No murmur heard after 2 doses
Prostaglandin Inhibitors

- MOA
 - Decreased the activity of cyclooxygenase, inhibiting prostaglandin synthesis

- DOC
 - Literature comparing ibuprofen and indomethacin
 - Ibuprofen as effective, evidence for less adverse effects (resulting in higher u/o, lower SCr values, less decrease in organ blood flow)
 - Risk of kernicterus exists with ibuprofen

- Duration of therapy
 - Some evidence suggests that prolonged therapy with indomethacin at a lower dose may decrease renal effects and IVH
 - Evidence that short course therapy may optimize efficacy, provided appropriate monitoring performed and contraindications considered
Prostaglandin Inhibitors

- **Indomethacin**
 - **Dosing**
 - 0.2mg/kg/dose IV Q12H x 3 doses
 - May try multiple courses
 - **Adverse Effects**
 - Impaired renal function
 - Compromised cerebral/mesenteric blood flow
 - **Monitoring Parameters**
 - BUN, SCr, U/O, K, Na, glucose, platelet count, hemoglobin, signs of bleeding, IVH, signs of NEC
Fluid Restriction

- Conflicting evidence
 - Evidence that restriction might prevent the DA from becoming clinically significant
 - in VLBW, studies have shown no effect on patient outcomes

- Current recommendation is NOT to restrict fluid
 - Reduce LV stroke volume and CO
 - Increases risk of indomethacin related nephrotoxicity
Ventilation

- **Goal**
 - Minimize pulmonary over-circulation

- **Maintain**
 - $pCO2 = 45-55\text{mmHg}$
 - $pH = 7.25-7.35$
 - Oxygen saturations = 88-93%

- **Increasing PEEP**
 - Reduces LV after-load, improving CO
Feeding

- Risk of Necrotizing Enterocolitis (NEC)
 - Decreased systemic perfusion
 - NSAID effects on intestinal perfusion
- Conservative approach
- Consider holding feeds
Surgical Management
Surgical Management

- **Procedure**
 - Lateral subcostal approach
 - Video-assisted thoracoscopic ligation

- **Ligation is not performed during first week of life due to risk of cerebral hemorrhage**
 - Sudden cerebral reperfusion of neonatal blood vessels can cause rupture
Baby J.K. – Surgical Management

- GA: 23 6/7 weeks, BW: 0.63kg
- Mother: 30yo, G2P0A1, hypothyroid, GBS unknown
- Admission weight 0.88kg, day 26 of life

Issues:
- Premature, VLBW
- RDS/CLD
- Grade III IVH
- *E. coli* sepsis
- PDA
 - Day 4 of life on ECHO in peripheral hospital
 - Received indomethacin x 2 courses (unresolved)
 - Ligated @ HSC day 23 of life
Post-Ligation Complications

- Post ligation cardiac syndrome
 - BW< 1000g
 - Low apgar scores at birth
 - Cortisol level < 250mmol/L
 - Requirement for cardiotropic support pre-ligation
Post-ligation Complications

- Immediate systolic and diastolic hypertension
- Cerebral ischemia-reperfusion hemorrhage
- Air-leak syndromes
- Pulmonary edema
- Hypotension
 - (requiring vasopressor support)
- Laryngeal nerve palsy
- Ligation of the left PA or aorta
Baby J.K. – Complications

<table>
<thead>
<tr>
<th>Time Post-Ligation</th>
<th>Complication(s)</th>
<th>Treatment/Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediately Post-ligation</td>
<td>Hemodynamic instability</td>
<td>Dobutamine (20mcg/kg/min)</td>
</tr>
<tr>
<td>12 hours post-</td>
<td>Pericardial effusion, L pleural effusion</td>
<td>Chest tube drainage, ventilation</td>
</tr>
<tr>
<td>8 days post-</td>
<td>Persistent chylothorax, coagulopathy</td>
<td>NPO, restart on portagen, FFP/vitamin K</td>
</tr>
<tr>
<td>14 days post-</td>
<td>R/O sepsis, excessive chylothorax losses (30mL/kg/hr)</td>
<td>Vancomycin + Tobramycin, thoracic duct ligation</td>
</tr>
<tr>
<td>17 days post-</td>
<td>Persistent chylothorax s/p thoracic duct ligation</td>
<td>Octreotide (4mcg/kg/hr)</td>
</tr>
</tbody>
</table>
Baby J.K. – Current Medications

- **Cardiotropic Support**
 - Dobutamine (18mcg/kg/min)
 - Hydrocortisone 0.6mg IV Q6H (2mg/kg/dose)

- **Edema**
 - Furosemide (0.05mcg/kg/hour)

- **Chylothorax**
 - Octreotide (7mcg/kg/hour)
 - Sodium Bicarbonate (HELD)

- **Pain**
 - Fentanyl (1.2mcg/kg/hour)
 - Morphine (27mcg/kg/hour)
 - Midazolam (10mcg/kg/min)

- **Coagulopathy**
 - Vitamin K 0.1mg daily x 6 days
 - FFP Q48H
Baby J.K. - Monitoring Parameters

- Hemodynamics
 - HR, BP, ventilation, pH
- Electrolytes
 - Na, K, Cl, Glucose
- Renal function
- Hematology
 - WBC, Bands/Polymorphs, bilirubin
- Coagulation
 - INR/PTT
- Pain control
- Ins & Outs
 - Chest tube drainage
 - mL/kg/hr, protein, bicarbonate, electrolyte content, cultures
- Cultures
Baby J.K. – Follow-Up

- Medical team recommended withdrawal of care to parents
- Parents intend to pursue further surgical management options
PDA: Take Home Messages

- Role for pharmacists in both medical and surgical management of significant PDAs
- For medical management, can assess risk/benefits for neonates and identify contraindications
- Post-surgical ligation, complications should be managed with ongoing evaluation
- Appropriate monitoring is crucial for identification and prioritization of DRPs
References

References

