NSAID Use in Post-Myocardial Infarction Patients

Leah Jackson, BScPhm
Pharmacy Resident
Cardiology Rotation
February 28, 2007

Objectives

By the end of the presentation, the audience will be able to use the evidence discussed to determine if NSAIDs can safely be used in post-myocardial infarction patients.

Case

- Mr. CP → 45 y.o. male
- Smoker
- PMH: cholecystectomy 1991, HTN (untreated), ↑ cholesterol, sports injury to shoulder several years ago → “flares up” every few months
- Meds on admission:
 - Ø Rx, Ø herbals
 - ibuprofen prn shoulder pain (may use for days to weeks every 2-3 months)
- Presents to hospital with inferior STEMI → angiogram shows diffuse CAD (med tx; Ø PCI)

Pharmacotherapeutic question

- In someone who has had an MI, is it safe to use ibuprofen regularly?

Case

- Discharge medications include:
 - ASA 81mg daily
 - Clopidogrel 75mg daily x 30d
 - Metoprolol 50mg BID
 - Ramipril 5mg daily
 - Atorvastatin 80mg
- While doing discharge medication reconciliation, I was reminded of his regular ibuprofen use
- Considering his diseases and drugs, can Mr. CP safely take ibuprofen as needed?

Cyclooxygenase

- Part of prostaglandin synthase → enzyme converting arachidonic acid into prostanoids (ie/ prostacyclin, thromboxane A₂)
- COX-1 and COX-2 isoforms
 - Inhibition of COX-1 linked to antiplatelet effects and GI toxicity
 - Inhibition of COX-2 implicated in ameliorating inflammation
Cyclooxygenase inhibitors

- 3 types:
 - Acetylsalicylic acid → irreversibly acetylates COX
 - Non-selective COX inhibitors (ie/ indomethacin, ibuprofen, naproxen) → competitively inhibit COX
 - COX-2 selective inhibitors (ie/ “coxibs”)

NSAIDs

- Abundant use in many populations
- To reduce fever, treat pain, reduce inflammation
 - Osteoarthritis, rheumatoid arthritis, dysmenorrhea, headache, sports injuries, dental pain, etc
- Easy to acquire (ie/ OTC ibuprofen)

Side effects of NSAIDs

- Dyspepsia → GI ulceration and perforation
- Nephrotoxicity
- Worsening hypertension and CHF
- Cardiovascular toxicity

CV toxicity – remember Vioxx®??

- COX-2 inhibitors developed and prescribed widely due to their possible decreased risk of GI toxicity/bleeding
- VIGOR trial – comparison of upper GI toxicity of rofecoxib 50mg daily vs naproxen 500mg BID in RA patients; no ASA allowed
- Less upper GI events with rofecoxib, but increased rate of MI (RR=4.5) → high rate in people at highest risk ie/ people who should have been on ASA

Vioxx® continued

- Merck’s APPROVe trial → rofecoxib 25mg daily vs placebo for colonic polyps
- ASA used if indicated
- ↑ incidence of MI and stroke (RR = 1.92)

- CV risks of coxibs
- Clinical studies indicate long-term use of coxibs ↑ CV events (MI, stroke)
- Limited available evidence suggests CV risk with traditional NSAIDs as well; degree of risk differs among agents
- Monographs for all NSAIDs should be revised to describe available data or lack of data on CV toxicity

Health Canada Summary

- Rofecoxib has strong evidence of CV toxicity (ie/ 3 year APPROVe trial; risk became apparent at 18 months) → removed from market September 2004
- Valdecoxib (Bextra®) – no studies longer than 1 year, however short term use in CABG patients showed increased MI and CVA; reports of serious skin reactions → removed from market April 2005
- Meloxicam available – lack of evidence for CV risk (no studies > 1 year); labelling changes

Health Canada Summary

- Evidence of risk for celecoxib not consistent; data from APC trial (cancer prevention, n=2035) indicates that high doses and long-term use ↑ CV risk
- Remains on market given:
 - CV risks appear to be lower than with rofecoxib
 - No evidence for greater risk vs traditional NSAIDs
 - Revised labelling indicating possible risks
 - GI harm appears to be less than most NSAIDs
 - Removal from market would limit NSAID options

MEDAL – November 2006

- CV outcomes with etoricoxib and diclofenac in patients with OA and RA
- Other studies have reported CV adverse events, but none have had the primary aim of assessing relative CV risk vs traditional NSAIDs
- Randomly assigned etoricoxib 60-90mg/d vs diclofenac 150mg/d
- 34 701 patients

MEDAL continued

- Aim to estimate RR of thrombotic CV events with etoricoxib vs diclofenac using a non-inferior trial design
- Broad population, including people with CV risk factors
 - Patients with hx of MI, CABG, or PCI more than 6 months preceding enrolment could participate
- Average treatment duration 18 months
MEDAL outcomes and concerns

- Results:
 - Event rates 1.24/100 patient years with etoricoxib and 1.30/100 patient years with diclofenac (HR 0.95; 95% CI, 0.81-1.11)
 - CV events in patients on etoricoxib similar to diclofenac; later in presentation, we’ll see why this is not great news
- Do not know absolute risk increase of either agent since no placebo group
- More CHF, HTN with etoricoxib
- More GI and hepatic adverse events with diclofenac

COX-2 meta-analysis

- 2006: 138 RCTs (COX-2 vs placebo and COX-2 vs traditional NSAIDS)
- Effects of COX-2 inhibitors and traditional NSAIDS on risk of serious vascular events (=MI, stroke, or CV death)
- COX-2 vs placebo:
 - 42% relative increase in incidence of serious vascular events (primarily MI)
 - event rates small in both groups (1.2%/yr vs 0.9%/yr = 3 excess events/1000 people treated in a year)

COX-2 systematic review

- Review of 23 observational studies (case-control, cohort)
- Compared CV events with COX-2’s, NSAID use, or both with non-use/remote use as reference exposure
 - Rofecoxib ≤ 25mg/d: RR = 1.33 (95%CI 1.0-1.79)
 - Rofecoxib > 25mg/d: RR = 2.19 (95%CI 1.64-2.91)
 - Celecoxib RR = 1.06 (95% CI 0.91-1.23)
- Early risk associated with rofecoxib (within 30 days)

Are all COX-2’s the same?

- Meta-analysis and systematic review not in complete agreement
- ‘State-of-the-art’ paper → although ↑ CV events with coxibs suggesting class effect, numerous studies indicating different degrees of risk associated with different coxibs
- No head-to-head comparisons

Why do coxibs increase CV toxicity?

- Possible mechanism
 - TxA2 and PGI2 in vasculature → balance of vasoconstriction, platelet activation vs vasodilation and platelet inhibition
 - TxA2 important in development of acute arterial thrombosis (use ASA to block synthesis; ↓ MI)
 - PGI2 ↑ during episodes of unstable angina (ie/ COX-2 upregulated for protection)
 - If PGI2 synthesis is blocked by COX-2 inhibitors, may tip equilibrium into prothrombotic state

Zarraga IGE and Schwarz ER. Coxibs and Heart Disease: What have we learned and what else do we need to know? J.Am. Coll. Cardiol. 2007;49:1-14.

Safety of non-selective NSAIDs

- If the COX-2-selective inhibitors are unsafe due to the mechanism indicated, then non-selective COX inhibitors should be safe.

- Why do the STEMI guidelines specifically ask us to avoid ibuprofen?

Remember the question:

- The case of Mr. CP:
 - In someone who has had an MI, is it safe to use ibuprofen regularly?

Ibuprofen statement in guidelines

- Based on 3 studies:
 - 2001 (Catella-Lawson)
 - 2003 (MacDonald)
 - 2003 (Kurth)

Catella-Lawson article

- Structural basis of inhibition of COX-1 in platelets by both ASA and NSAIDs had been elucidated → both binding sites within the core of the enzyme

- Concerned about competitive interactions between ASA and NSAIDs since patients with arthritis and vascular disease may receive both

 - if NSAIDs compete with ASA and prevent binding, may ↓ cardioprotection since platelet function only impaired by NSAIDs for a portion of dosing interval (reversible binding)

Catella-Lawson

- Measured serum thromboxane B2 levels (an index of COX-1 activity in platelets) and platelet aggregation in platelet-rich plasma ex vivo

Results:

- Ibuprofen given before ASA or given TID antagonized the irreversible platelet inhibition induced by ASA
- Rofecoxib, acetaminophen and diclofenac had no effect

Conclusions:

- Treatment with ibuprofen in patients with ↑ CV risk may limit the cardioprotective effects of ASA

MacDonald (2003)

- Postulated that patients with known CV disease who take low-dose ASA and ibuprofen might have ↑ risk of CV mortality
- Accessed UK database retrospectively → selected patients diagnosed with MI, angina, stroke or TIA, and peripheral vascular disease
- 4 groups: discharged home on ASA, ASA + ibuprofen, ASA + diclofenac, ASA + other NSAID

Results

- Outcomes: all-cause mortality and CV mortality

ASA + ibuprofen (mean dose 1210mg/d) vs ASA alone: HR = 1.93 (95% CI 1.30-2.87)
- A statistically and clinically significant increased risk of mortality in users of ASA/ibuprofen vs ASA alone

No increase noted in other groups

- Lends support to hypothesis that ibuprofen combined with ASA given for secondary prevention may be deleterious (antagonism of cardioprotective effects of ASA

Kurth (2003)

- 5 year randomized, DB, PC trial
- 22,071 apparently healthy US male MDs
- 325mg ASA on alternate days vs placebo
- 139 MIs (ASA group) vs 239 MIs (placebo)
- Prospective observational data on use of NSAIDs (subgroup analysis of Physicians’ Health Study)

In ASA group:

- NSAID use <60d/yr: RR of MI = 1.21 (95% CI, 0.78 – 1.87)
- NSAID use ≥ 60d/yr ("regular use"): RR of MI = 2.86 (95% CI, 1.25 – 6.56)

Conclusions: regular but not intermittent use of NSAIDs inhibits clinical benefits of ASA

Limitations of ibuprofen information

- Theory makes sense, but evidence to support it is weak
- MacDonald: retrospective, unclear if patients took prescribed NSAIDs as directed, and no adjustments for severity of CV disease, doses of individual NSAIDs, smoking or BMI
- Kurth: observational (bias and confounding possible), post-hoc
 - MDs using NSAIDs regularly also had greater BMI, more arthritis, DM, and HTN, and were more likely to be smokers
 - No information on brand or dose of NSAIDs
 - Few events for comparison in exposed groups

Meta-analysis (Kearney) information on ibuprofen

- Effects of COX-2 inhibitors and traditional NSAIDS on risk of serious vascular events (=MI, stroke, or CV death)
- For CV effects of traditional NSAIDs, used mostly indirect methods to compare NSAIDs to placebo (in pain trials of NSAIDs, no placebo control)
- Statistical methods indicated that high-dose ibuprofen (800mg TID) increased risk of vascular events (RR=1.51, 95% CI 0.96-2.37)
- Unable to assess differing CV effects among ASA users and non-users

Systematic review (McGettigan)

- Review of 23 observational studies (case-control, cohort)
- Compared CV events with COX-2’s, NSAID use, or both with non-use/remote use as reference exposure
- CV events no different when ibuprofen compared to placebo (RR=1.07, 95% CI 0.97-1.18)
- RR’s close to 1 in users and non-users of ASA

What to do for Mr. CP?

- Ibuprofen should not be used; even if evidence is not strong, it’s what we have → do no harm (and guidelines are explicit)
- Based on previous discussion, COX-2 inhibitors do not seem like a good idea
- How about acetaminophen 1g q6h prn??

Outstanding questions

- What about other non-selective NSAIDs?

Kearney meta-analysis

- High-dose regimens of ibuprofen and diclofenac (75mg BID) associated with a moderate increase in the risk of vascular events
 - Ibuprofen RR=1.51 (95% CI 0.96-2.37)
 - Diclofenac rate ratio for vascular events = 1.63 (95% CI, 1.12-2.37)
- High-dose naproxen (500mg BID) NOT associated with an excess of CV events → RR=0.92 (0.67-1.26)
- ??? – no increased risk with naproxen since sustained inhibition of COX-1? (t1/2=14h, BID dosing)
McGettigan Systematic Review

- Diclofenac RR = 1.40 (1.16-1.70)
- Other traditional NSAIDs had RRs close to 1
 - Naproxen 0.97 (0.87-1.07)
 - Piroxicam 1.06 (0.70-1.59)
 - Ibuprofen 1.07 (0.97-1.18)

Summary

- COX-2 inhibitors appear to have an increased risk of CV events (ie/ 3 excess events in 1000 people treated; may be higher in high risk groups)
- Ibuprofen may or may not increase risk; some evidence to support it, a sensible theory, and a guideline statement
- Diclofenac may increase risk
- Naproxen appears not to...

Study limitations

- BMJ meta-analysis
 - Relatively small number of events available for analysis; limits assessment of hazards of various agents
 - Timing of hazard
 - Tabular summaries of data
 - Attention limited to CV hazards
- Systematic review of observational studies
 - Most information from databases; exposure?
 - Self-prescription possible
 - CV risk information was not complete in all studies (ie/ smoking, HTN, hyperlipidemia)
 - Differing baseline ages and risks
 - Many of pooled RR estimates are close to null

So can I safely use NSAIDs in people at risk of MI?

- No clear answer!
- Some of the data is conflicting, but there appears to be an increase in this rare but serious event
- Must consider risks and benefits
 - What are CV risks? Immediately post-MI vs no risk factors for CAD
 - Non-NSAID options for pain
 - Subjective report of efficacy
 - Risk of other adverse events ie/ GI bleeding

Suggestions

- In patients with high risk of CV events (ie/ post-MI, post-CABG, multiple risk factors), prudent to avoid
- If an NSAID must be used, evidence indicates naproxen may be safest choice
 - If at risk for GI bleed, can we use a ulcer prophylaxis and naproxen?
- If patient needs COX-2 inhibitor, may be willing to accept increased risk
- Dose/duration issue not clear; seems prudent to use lowest dose for shortest period of time possible

Pharmaceutical care

- Involve the patient in the decision → explain possible risks and benefits and choose together

Questions?