Myxedema Coma:
A 911 Emergency to Get Patients “Out of the Cold”

March 1, 2007

Justin Lee
Pharmacy Resident
University Health Network
Objectives

At the end of this session, you should be able to:

- Identify the common signs and symptoms of myxedema coma
- Explain the mechanism for decompensated hypothyroidism
- Recommend appropriate treatment options for myxedema coma
- Recommend appropriate treatment options for complications associated with myxedema coma
Patient Case
HPI

- **Feb 12, 2007 – TWH ER**
 - Mrs. RH - 87 year old caucasian female
 - Sudden onset of severe weakness and fatigue
 - CNS - confusion, ↓ LOC, visual hallucinations
 - CVS – bradycardia, JVP 5-6 cm
 - Resp – SOB upon minimal exertion
 - 3 week history of SOB with orthopnea and PND
 - 3 week history of recurrent epistaxis requiring cauterization
 - Tx – 2 units of PRBC + furosemide 120 mg IV

- **Feb 13, 2007 – TWH MSICU**
 - Cardiogenic shock and respiratory failure requiring intubation and pacemaker insertion
HPI

- **Allergies**
 - Penicillin

- **Vitals**
 - BP 88/54, HR 35
 - RR 20, O₂Sat 70%
 - T 34.3°C
<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg</td>
<td>77</td>
</tr>
<tr>
<td>WBC</td>
<td>4.4</td>
</tr>
<tr>
<td>Plt</td>
<td>343</td>
</tr>
<tr>
<td>SCr</td>
<td>203</td>
</tr>
<tr>
<td>CrCl</td>
<td>17</td>
</tr>
<tr>
<td>CK</td>
<td>130</td>
</tr>
<tr>
<td>Tn</td>
<td>0.36</td>
</tr>
<tr>
<td>ALT</td>
<td>131</td>
</tr>
<tr>
<td>ALP</td>
<td>398</td>
</tr>
<tr>
<td>ALT</td>
<td>101</td>
</tr>
<tr>
<td>Bili</td>
<td>24</td>
</tr>
<tr>
<td>INR</td>
<td>1.51</td>
</tr>
<tr>
<td>Alb</td>
<td>31</td>
</tr>
<tr>
<td>BG</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Justin Lee, Mar 2007
Diagnostic

- **CXR**
 - RLL consolidation

- **ECG**
 - sinus bradycardia
 - QT = 561 ms

- **Urine, MSU**
 - **Enterococcus** > 100 x E6
 - S – ampicillin, nitrofurantoin
 - R – tetracycline
Past Medical History

- **Cardiac**
 - HTN
 - Stable angina
 - AFIB
 - CHF (Grade III LV)

- **Renal**
 - Chronic renal insufficiency

- **Other**
 - Microcytic anemia (x 6 months)
 - Sacral and R leg ulceration (x 4 months)
 - Recurrent epistaxis (x 3 weeks)
 - SOB upon exertion (x 3 weeks)
Medication History

<table>
<thead>
<tr>
<th>Indication</th>
<th>Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>ASA 325 mg po OD</td>
</tr>
<tr>
<td>HTN</td>
<td>Clopidogrel 75 mg po OD</td>
</tr>
<tr>
<td>CHF</td>
<td>Metoprolol 50 mg po BID</td>
</tr>
<tr>
<td>AFIB</td>
<td>Ramipril 10 mg po OD</td>
</tr>
<tr>
<td></td>
<td>Furosemide 120 mg po OD</td>
</tr>
<tr>
<td></td>
<td>Nitroglycerin 0.4 mg Spray SL PRN</td>
</tr>
<tr>
<td>Other</td>
<td>Omeprazole 20 mg po OD</td>
</tr>
</tbody>
</table>
Thyroid Profile

<table>
<thead>
<tr>
<th>Marker</th>
<th>Normal</th>
<th>Mrs. RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH</td>
<td>0.35 – 4.94</td>
<td>54.75</td>
</tr>
<tr>
<td>T4</td>
<td>9 – 19</td>
<td>6</td>
</tr>
<tr>
<td>T3</td>
<td>2.6 – 5.7</td>
<td>< 1.5</td>
</tr>
</tbody>
</table>

S&Sx consistent with primary hypothyroidism

Diagnosis – Myxedema Coma

Justin Lee, Mar 2007
Review of Hypothyroidism and Myxedema Coma
Hypothalamic-Pituitary-Thyroid Axis
Hypothyroidism Classification

(1) Primary Hypothyroidism
- Disorder of the thyroid gland
 - ↓ production of T3 and T4
 - E.g. Hashimoto’s disease, iodine deficiency

(2) Central Hypothyroidism
- Disorder of the pituitary gland, hypothalamus, or hypothalamic-pituitary portal circulation
 - ↓ stimulation of a normal thyroid gland by TSH
 - ↓ thyroid hormone

 - (a) Secondary Hypothyroidism
 - Disorder of the pituitary gland to release TSH
 - e.g. Sheehan's syndrome, pituitary adenomas

 - (b) Tertiary Hypothyroidism
 - Disorder of the hypothalamus to release TRH

Justin Lee, Mar 2007
Hypothyroidism Classification

- **Primary Hypothyroidism**
- **Secondary Hypothyroidism**
- **Tertiary Hypothyroidism**
Review of T4, T3, Reverse T3 (rT3)

- T4 is deiodinated to form either T3 or rT3
 - T3 is active form
 - 4-5x more potent than T4
 - Short half life (~24 h)
 - rT3 is non-active form

- >99% of T4 and T3 is bound in the blood
 - 75% - Thyroid binding globulin (TBG)
 - 15-20% - Thyroid binding prealbumin (TBPA)
 - 5-10% - Albumin
Hypothyroid Presentation

- **Signs and symptoms**
 - Dry, pale, cool skin
 - Sparse, coarse hair
 - Deep hoarse voice
 - Fatigue
 - Peri-orbital edema
 - Macroglossia
 - Non-pitting edema of hands/feet
 - Delayed deep tendon reflexes
 - Cold intolerance

Source: http://www.netterimages.com
Physiological Effects

- **Calorigenesis**
 - ↓ basal metabolic rate
 - ↓ O_2 consumption
 - ↓ thermogenesis

- **Compensated Hypothyroidism**
 - Peripheral vasoconstriction to redirect blood towards central organs to maintain normal body temperature

References:
Physiological Effects

Cardiovascular

- α- and β-adrenergic imbalance
 - Reduction in expression of β-adrenergic receptors
- Result?
 - Diminished β receptor responsiveness
 - ↓ heart rate, ↓ stroke volume, ↓ cardiac output
 - Unopposed α receptor responsiveness
 - Vasoconstrictive, hypertensive response to catecholamines
 - Peripheral vasoconstriction
 - Diastolic hypertension
 - Decreased blood volume (up to 20%)
- Other
 - Prolonged QT interval
 - Ventricular enlargement

Physiological Effects

Respiratory Function

- ↓ ventilatory drive to hypoxia and hypercarbia
 - Alveolar hypoventilation
 - CO$_2$ retention and narcosis
 - Coma
- Exacerbating factors?
 - Sedatives
 - Pneumonia
 - Obstructive sleep apnea
 - Myxedematosus swelling of upper airway

<table>
<thead>
<tr>
<th>Alteration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug clearance</td>
<td>↓ Risk of drug toxicity</td>
</tr>
<tr>
<td>ADH level</td>
<td>↑ Risk of hyponatremia</td>
</tr>
<tr>
<td>Water clearance</td>
<td>↓ Risk of hyponatremia</td>
</tr>
<tr>
<td>Gluconeogenesis Glycogenolysis</td>
<td>↓ Risk of hypoglycemia</td>
</tr>
<tr>
<td>Cortisol clearance</td>
<td>↓ Thyroid hormone replacement can contribute to cortisol insufficiency</td>
</tr>
<tr>
<td>RBC</td>
<td>↓ Anemia with Hct 30-35% common</td>
</tr>
<tr>
<td>WBC</td>
<td>N or ↓ Rarely > 10 000</td>
</tr>
<tr>
<td>CK</td>
<td>↑ Can be mistaken for myocardial infarction</td>
</tr>
</tbody>
</table>
Decompensated Hypothyroidism

- Decompensation occurs when homeostatic mechanisms are disrupted by a precipitating factor.

- Progressive dysfunction can result in myxedema coma.
Myxedema Coma

- Most severe expression of hypothyroidism
 - First reported in 1879 in London, England
 - Rare – only 300 cases have been reported to date!

- Life-threatening condition
 - Historically, mortality = 60-70%
 - With current treatment advances, mortality = 15-20%

- “Myxedema coma” is a misnomer
 - Neither myxedema or coma are prerequisites for diagnosis

Justin Lee, Mar 2007

What is Myxedema?

- Skin and tissue disorder usually caused by severe prolonged hypothyroidism

- Accumulation of hyaluronic acid and chondroitin sulfate in the dermis
 - Mechanism unknown

- Presentation
 - Skin thickening
 - Swelling of lips, subcutaneous tissue
 - Dry, yellow skin
 - Puffiness around eyes

Source: http://meded.ucsd.edu

Justin Lee, Mar 2007
What is Myxedema?
Clinical Presentation

- Signs and symptoms of myxedema coma
 - Altered mental status
 - Hypothermia
 - Hypoventilation
 - Bradycardia
 - Hypotension
 - Hyponatremia
 - Hypoglycemia
 - Associated infection

 → Hallmark signs

- Progression dysfunction of the cardiovascular, respiratory and central nervous systems
 - E.g. lethargy → stupor → coma
Precipitating Factors

- Infection / sepsis
- Cold exposure
- Congestive heart failure
 - Lung disease
 - Stroke
 - Gastrointestinal bleeding
 - Trauma
 - Hypoglycemia

- Drugs
 - Anesthetics
 - Sedatives
 - Narcotics
 - Tranquilizers
 - Beta blockers
 - Diuretics
 - Amiodarone
 - Lithium
 - Phenytoin
 - Rifampin

Justin Lee, Mar 2007

Risk Factors

- **Elderly**
 - Majority ≥ 60 years of age

- **Female**
 - 80% of cases

- **Winter**
 - 90% of cases
 - Lowers threshold for vulnerability because increased thyroid hormone requirement to maintain adequate body temperature

- Prior history of hypothyroidism (or related causes)

Diagnosis

- Myxedema coma is caused by primary hypothyroidism in >95% of cases
 - ↓ T4 and ↑↑↑ TSH

- Differentiate from central hypothyroidism
 - ↓ T3, ↓ T4, ↓ or ↔ TSH

- Differentiate from severe non-thyroidal systemic illness (sick euthyroid syndrome)
 - ↓ T3, ↓ T4, ↓ or ↔ TSH
Diagnosis

- Other laboratory abnormalities that support the diagnosis:
 - ↑ CK
 - ↓ Na
 - Hypoglycemia
 - Anemia
 - ↓ WBC
General Treatment Principles

- Early recognition and rapid treatment
 - “When in doubt, treat”

- Resuscitate and stabilize patient within 24 – 48h

- Empiric thyroid hormone therapy
- Empiric glucocorticoid therapy
- Empiric antibiotic therapy
- Supportive care

Three major strategies
- T4 (levothyroxine) alone
- T3 (liothyronine) alone
- T4/T3 combination

Challenge is achieving fine balance between:
- Urgent replacement of thyroid hormone
- Complications of supraphysiological levels of thyroid hormone

Be more cautious with elderly patients especially those with underlying cardiac disease
Therapy with T4

Advantages
- Metabolism of 131I-labelled T4 allows for estimation of required dose
- T4’s peripheral conversion requirement and tight binding to thyroxine-binding globulin cause slow, gradual release of T3

Significance?
- Overtreatment is less likely compared to T3
 - High dose can be used to replenish body pool of T4 (500 µg)
- More predictable onset and duration of action
 - Elimination half-life ($t_{1/2}$) = 7 d

Therapy with T4

Advantages

- Gradual conversion to T3 minimizes risk of adverse cardiac effects associated with sudden changes in T3
 - Organ response to thyroid hormone replacement occurs sequentially rather than in parallel
 - Cardiovascular system regains its response to adrenergic stimulation before it regains its full capacity to perform work
 - Excessive thyroid hormone levels poses risk of overstimulating the cardiovascular system

- High doses do not appear to cause any detectable adverse effects when administered to sick euthyroid patients

Therapy with T4

Disadvantages

- Conversion of T4 → T3 is reduced in critically ill patients and hypothyroid state
 - Impaired 5’deiodinase activity
 - Increased conversion to reverse T3 (inactive)
T4 Regimen

- 300 – 500 µg IV x 24 h then
 - 50 – 100 µg IV od until PO meds tolerated

- Consider dose reductions for elderly patients (especially if known history of cardiac disease)
Case Reports with T4

Retrospective review by Arlot et al

- 2 patients treated with intravenous T4
 - Pt 1: 1000 µg IV (load) + 500 µg IV (on day 6,12)
 - Pt 2: 1000 µg IV (load) + 100 µg PO od (day 9)

- 5 patients treated with oral T4
 - Pt 4-5: 500 µg PO (load) + 100 µg PO od (day 2)
Case Reports: Arlot et al

In IV group,
- T4 and T3 peaked within 3 h
- Levels fell to hypothyroid range after 24 h
- Good clinical response within 24-72 h
- One died of myocardial infarction on day 15

In PO group,
- T4 and T3 increased slowly
- Levels remained in hypothyroid range
- Good clinical response within 24-72 h
- One died of septicemia on day 9
Conclusions?

- Oral route allows for more gradual increase of T4 levels without significant delay (> 36 h) in onset of clinical response.

- Peripheral conversion of T4 to T3 allows for gradual delivery to organ systems.
Case Reports with T4

- Prospective case series by Holvey et al
 - Seven patients treated with intravenous T4
 - 300-500 µg IV to correct thyroid hormone deficit
 - All patients exhibited:
 - No evidence of cardiac complications related to acute treatment with T4
 - Note that 2 patients had significant history of CAD
 - Improvement in vital signs within 6-12 h
 - Return to consciousness within 36 h
 - Ability to return home

Case Reports with T4

- Prospective case series by Rodriguez et al.
 - Eleven patients treated with intravenous T4
 - 6 patients received 500 µg IV then 100 µg IV od
 - 5 patients received 100 µg IV od
 - High dose T4 group had lower mortality rate than low dose T4 group
 - 16.7% vs. 60% (NS)

Conclusions on T4

- High dose T4 (po/iv) appears to be a reasonable option for acute treatment
 - 85% (17 of 20) survival rate
 - No significant cardiac complications attributable to T4 treatment
Therapy with T3

Advantages

- Rapid onset of action
 - No deiodination is required for bioactivity

- Animal studies show that T3 cross the BBB more readily and rapidly than T4

Treatment with T3

Disadvantages

- Use of T3 has risk of overcorrection and abrupt cyclical changes in metabolic status
 - Risk of cardiovascular complications and relapse
 - Elimination half life \((t_{1/2}) = 24\ h\)

- Hylander et al. found that average daily dose \(\geq 76\ \mu g\) is associated with fatal outcome
 - T3 levels were 1.9x higher in non-survivors compared to survivors \((p < 0.05)\)

T3 Regimen

- 10 – 20 µg IV then
 - 10 µg IV q4h x 24 h then
 - 10 µg q6h until patient regains consciousness and can take oral T4

- Consider dose reductions for elderly patients (especially if known history of cardiac disease)
Case Reports with T3

- Case reports between 1911-1961 showed that survival rates were higher in patients treated with T3 compared to T4

![Bar chart showing survival rates for T3 and T4 treatment]

Survival (%)

- T3: 14/31 (45%)
- T4: 4/20 (20%)

Case Reports with T3

- All non-surviving patients in the T4 group had received inadequate doses of T4
 - 75% of surviving patients had received high dose T4

- All surviving patients in the T3 group had received high doses of T3 (i.e. 50-200 µg load)

- 47% of non-surviving patients had received high dose T3 and died despite an initial response

Case Reports with T3

- Prospective case series by Pereira et al
 - Pt 1 and 2 - T3 12.5 µg NG q6h
 - Pt 3 - T3 12.5 µg NG q6h x 6 days then
 - T3 50 µg IV q24h x 7 days then
 - T4 100 µg IV until PO meds tolerated
 - All patients survived without cardiac complications

- Serum T3 levels failed to rise despite NG treatment in Pt 3
 - T4 therapy corrected T4 levels, but did not increase T3 levels
 - Reverse T3 rose proportionately to administered T4 levels

- Consciousness was regained after 3-7 days of treatment

Case Reports with T3

Case report by McCulloch et al

- Patient treated with single dose of 2.5 µg NG
 - Within 30 min,
 - Increase in O₂ consumption (80 → 100 L/min/m²)
 - Increase in heart rate (62 → 80 bpm)
 - Increase in cardiac output (3.4 → 4.2 L/min/m²)
- Patient recovered without any cardiac complications
- Dose increased gradually over 10 days to 10 µg NG od then switched to T4 0.1 mg PO od
- Results suggest that there is a risk of precipitating myocardial ischemia with larger doses of T3
Conclusion on T3

- Low dose T3 (po/iv) appears to be a reasonable option in acute treatment

- Conflicting evidence regarding the safety of high dose T3
Comparison of T4 and T3

<table>
<thead>
<tr>
<th></th>
<th>T4</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>Up to 1 week</td>
<td>Within 24 hours</td>
</tr>
<tr>
<td>(Consciousness)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset</td>
<td>8 – 14 h</td>
<td>2 – 3 h</td>
</tr>
<tr>
<td>(Temperature and O2 consumption)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t₁/₂</td>
<td>7 d</td>
<td>1 d</td>
</tr>
<tr>
<td>Availability</td>
<td>IV and PO</td>
<td>PO</td>
</tr>
<tr>
<td>In Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative Efficacy</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>Comparative Safety</td>
<td>Decreased relative risk of cardiac complications?</td>
<td>Increased relative risk of cardiac complications?</td>
</tr>
</tbody>
</table>
Therapy with T4/T3 Mix

- Wartofsky advocates combination therapy
 - T4 - 4 µg/kg LBW (200-300 µg) IV x 24h then
 - 100 µg IV x 24h then
 - 50 µg PO/IV q24
 - T3 - 10 µg T3 IV q8-12h until maintenance
 oral T4 dose is tolerated

- Physiologic rationale
 - Improved safety and efficacy?
Conclusions

- Good evidence to support one of the above replacement strategies in terms of efficacy or safety does not exist.

- No controlled trials comparing strategies to each other or various dosing regimens.

- Most experts advocate the use of intravenous T4 alone.
Glucorticoid Therapy

- Empiric therapy is advocated in case of concomitant adrenal insufficiency to prevent adrenal crisis
 - Myxedema coma can also be caused by pituitary or hypothalamic disease
 - Ridgeway et al found that cortisol response to stress is blunted in severe hypothyroidism
 - Thyroid hormone therapy may increase cortisol clearance

- Tx: Hydrocortisone 50-100 mg IV q6-8h

- Monitoring
 - Discontinue if baseline cortisol consistent with stress response
 - If needed, ACTH stimulation test can be administered

Antibiotic Therapy

- **Infection present in 35% of cases**
 - Pneumonia or urosepsis is most common

- **Usual signs of infection are absent**
 - Fever, diaphoresis, tachycardia

- **Since hypothermia is the rule, presence of a “normal” temperature is clue of underlying infection and/or sepsis**

- **Empiric therapy with broad spectrum antibiotics is recommended until organism is identified**

Hypotension

Recall hypertension is expected in patients with uncomplicated chronic hypothyroidism

Hypotension indicates:

- Bleeding
 - GI bleed
- Functional loss of blood volume
 - Pooling of blood secondary to sepsis
 - Iatrogenic vasodilation due to external warming
 - Overuse of diuretics

Hypotension and Vasopressors

- Volume resuscitation with whole blood is preferred
 - Why?
 - Restores blood volume
 - Increases O$_2$-carrying capacity
 - Alternative? Crystalloids

- If possible, avoid vasopressors and inotropes
 - Exacerbate or precipitate cardiac arrhythmias (especially when combined with thyroid hormone replacement)
 - Treatment often fails to achieve desired effect
 - Recall α- and β-adrenergic imbalance
 - Recall reduced blood volume

Hypotension and Hyponatremia

Dilemma!
- Need to administer fluids for hypotension
- Need to restrict fluids for hyponatremia

Treatment strategies?
- Isotonic saline to replace majority, but not all, of daily fluid losses
- Hypertonic 3% saline (50-100 mL) followed by furosemide bolus (40-120 mg) to promote diuresis

Treatment of Hypothermia

- Recall peripheral vasoconstriction is one mechanism of compensation for hypothermia.

- Exercise caution with re-warming:
 - Rapid warming can cause peripheral vasodilation and increase O$_2$ consumption:
 - Result? cardiovascular collapse
 - eg. external warming blankets
 - Passive re-warming is recommended:
 - eg. conventional blankets
Predictors of Fatal Outcome

- Advanced age
- Body temperature < 34°C
- Hypothermia non-responsive after 3 day
- Bradycardia < 44 bpm
- Sepsis
- Myocardial infarction
- Hypotension
- Treatment with T3?

Mortality and Hypothermia

Response to therapy and survival correlates with degree of hypothermia
(Based on all 76 reported cases in the world between 1911-1961)

Pharmacy Care Plan

DRP
- Mrs. HR is experiencing signs and symptoms of myxedema coma and requires appropriate thyroid hormone replacement therapy

Clinical Outcome
- Resolve urgent endocrine deficit and prevent complications of myxedema coma

Pharmacotherapeutic Outcome
- Provide optimal thyroid hormone replacement therapy at the right dose, frequency and duration while minimizing cardiac complications

Justin Lee, Mar 2007
Pharmacotherapeutic Endpoints

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Degree of Change</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothermia</td>
<td>Resolution</td>
<td>24 – 48 h</td>
</tr>
<tr>
<td>Heart Rate</td>
<td>Improvement</td>
<td>24 h</td>
</tr>
<tr>
<td>Hypotension</td>
<td>Keep MAP > 65</td>
<td>24 h</td>
</tr>
<tr>
<td>TSH</td>
<td>Normalize</td>
<td>24 – 48 h</td>
</tr>
<tr>
<td>T4</td>
<td>Normalize</td>
<td>24 – 48 h</td>
</tr>
<tr>
<td>T3</td>
<td>Normalize</td>
<td>Within 7 days</td>
</tr>
<tr>
<td>LOC</td>
<td>Increased Complete recovery</td>
<td>24 – 48 h, 7 days</td>
</tr>
</tbody>
</table>
Therapeutic Alternatives

As discussed:
- Intravenous T4 alone
- Intravenous T3 alone
- T4 / T3 combination

Patient considerations
- Elderly patient
- History of cardiac disease
- Prolonged QT
- Elevated CK and Tn on admission
Therapeutic Plan

<table>
<thead>
<tr>
<th>Indication</th>
<th>Drug Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myxedema Coma</td>
<td>Levothyroxine (T4) 250 µg IV over 24 h then 125 µg IV q24h</td>
</tr>
<tr>
<td>Enterococcus (Urine)</td>
<td>Ampicillin 1 g IV q6h</td>
</tr>
<tr>
<td>Empiric Tx</td>
<td>Ceftriaxone 1 g IV q24h</td>
</tr>
<tr>
<td></td>
<td>Hydrocortisone 50 mg IV q6h</td>
</tr>
<tr>
<td>Bradycardia / Hypotension</td>
<td>Dobutamine 4 µg/kg/min IV</td>
</tr>
<tr>
<td></td>
<td>Levaphed 0.48 µg/kg/min IV</td>
</tr>
<tr>
<td>Post MI</td>
<td>ASA 80 mg NG od</td>
</tr>
<tr>
<td></td>
<td>Clopidogrel 75 mg ng od</td>
</tr>
</tbody>
</table>

Justin Lee, Mar 2007
Therapeutic Endpoints

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Degree of Change</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC</td>
<td>Improvement Complete recovery</td>
<td>24 – 36 h</td>
</tr>
<tr>
<td>Cardiac Complications (MI or arrhythmia)</td>
<td>Prevent</td>
<td>Throughout</td>
</tr>
<tr>
<td>Renal Dysfunction</td>
<td>Prevent further progression</td>
<td>Throughout</td>
</tr>
</tbody>
</table>
Assessment of Clinical Efficacy

- Within 24 h of receiving IV T4,
 - ↑ LOC
 - GCS 6 → GCS 11, SAS 3 → 4
 - ↑ HR
 - 60 → 85 bpm
 - ↑ respiratory capacity
 - PC 16, PEEP 10 → PS 10, PEEP 8
 - ↑ body temperature
 - 32.0 – 37.7°C
Assessment of Clinical Efficacy

<table>
<thead>
<tr>
<th></th>
<th>Normal Range</th>
<th>Feb 12</th>
<th>Feb 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH (mIU/L)</td>
<td>0.35-4.94</td>
<td>54.75</td>
<td>6.64</td>
</tr>
<tr>
<td>Free T4 (pmol/L)</td>
<td>9 - 19</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Free T3 (pmol/L)</td>
<td>2.6 – 5.7</td>
<td>< 1.5</td>
<td>< 1.5</td>
</tr>
</tbody>
</table>
What happened to Mrs. RH?

- Body temperature began to decline

- Significant cardiac ischemia after 3 days of thyroid replacement
 - CK 133, Tn 7.65

- Potential causes and contributing factors?
 - High dose IV T4 therapy
 - Use of vasopressors
 - Pre-existing CAD

- Family decided to withdraw therapy
Key Points

- Myxedema coma is a severe presentation of hypothyroidism
- Treatment needs to be initiated promptly in an intensive care unit setting
- Thyroid hormone therapy is critical to survival
- Adjunctive measures may be essential
 - fluids, antibiotics, corticosteroids
Questions?